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Abstract

The complicated dynamical behavior of a flexible rotor-bearing system is studied in this paper. The unsteady oil-film

force model described by three functions is considered. The bifurcation and chaos behaviors were revealed by calculating

the maximum Lyapunov exponent of the system. Two new phenomena were found in this system: first, the chaos with two

attracting areas which cannot be distinguished from the stable period doubling motion on Poincarè section; second, for the

flexible rotor system with two unbalanced disks, the response varies in a large extent when the phase angle between the

eccentricities of disks is different. The experiments were also carried out. Comparison between experimental and calculated

results shows that the significant use of the max Lyapunov exponent in revealing the bifurcation and chaos characteristics

of the rotor-bearing system.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

A lot of researches have been done for Jeffcott rotor system that is a shaft attached with a disk, to reveal the
phenomena of bifurcation and chaos. The bifurcations of periodic solution are usually analyzed by Floquet
theory. For example using Floquet theory, Chen et al. obtained the stability boundaries of periodic motion in
parameter plane of mass eccentricity-rotation speed [1–3]. Based on Cash model, Meng established the open–close
crack model and studied the bifurcation and chaos of cracked rotor-bearing systems with nonlinear turbulent
motion [4,5]. Ehrich described a typical nonlinear phenomenon of casing-rub, and studied the so-called ‘‘natural
border frequency’’ near sub-harmonic and super-harmonic resonances [6]. Goldman and Muszyska presented a
mathematical model of rubbing force and revealed the sub-harmonic response and chaos alternating along with
the increase of rotation speed [7]. Chu studied rotor system in rub event, and analyzed the path of entering into
and out the regime of chaos [8–10]. Quasi-periodic and chaotic behaviors of an unbalanced rigid rotor veering
systems were found by Kim and Noah [11] and Abu-Mahfouz [12]. The response of an unbalanced rotor/bearings
system with nonlinear suspension was investigated numerically by Chen and Yau [13]. Jump phenomena, sub-
harmonic and quasiperiodic vibrations were found. Badgley and Booker [14] investigated the effects of residual
unbalance on the cylindrical motion. The rotor was modeled by means of five independent coordinates, which are
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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the coordinates of the rotor mass center in plane orbits and the three Euler angles. For such rotors, Adiletta,
Guido, and Rossi found some theoretical and experimental results for the cylindrical motion and pointed out the
possible chaotic motions stemming from the nonlinear response of the bearings [15,16]. The Muszynska model
[17–19] was introduced as a simple model of nonlinear fluid dynamic forces generated in bearings as well as in
seals based on the results of a series of experiments. A parameter called the fluid average circumferential velocity
ratio is used to describe the characteristic of the fluid motion as a whole. The fluid film radial stiffness, damping,
and inertia effects are described by nonlinear functions of the rotor eccentricity ratio inside the bearing and seal.
Adopting the Muszynska model, Ding et al. [20] investigated the Hopf bifurcation of a rotor/seal system.
The level of unbalance on the bifurcation of synchronous whirl was discussed.

These researches result comprehensively illuminate the bifurcation and stability of motion of Jeffcott rotor/
bearing system with single disk. Whereas the researches on the rotor system with multidisk are rather limited.
Some procedures for balancing large multibearing rotors machines have been established [21]. A nonlinear
mathematical model which includes the nonlinear oil bearings was employed for the on-site identification
of unbalance change by Krodkiewski et al. [22]. Recently, the dynamics of a multibearing rotor attached
with two disks are investigated experimentally by Ding and Leung. A phenomenon that the pre-existing
non-synchronous whirl/whip resulted from the instability of one shaft can activate the onset of oil instability
of its neighboring shaft is revealed [23].

In this paper, the bifurcation and chaos characteristics of a flexible rotor system with two unbalanced disks
are investigated using the maximum Lyapunov exponent. The results show that the maximum Lyapunov
exponent is a valid method in identifying the bifurcation and chaos characteristics for rotor-bearing system.
Experimental result carried on a test rig supports partly the theoretical analysis.

2. Equation of motion

2.1. Analytical model

Fig. 1 shows the model of a flexible rotor system with two unbalanced disks. The mass of flexible shafts is
concentrated to the disks and the ends, k1, k2 and k3 denote the bending stiffness of three spans of shaft,
respectively. O2 and O3 are geometrical center of the disks 2 and 3, O1 and O4 are center of left and right axle
neck, respectively; c2 and c3 are the centers of masses of disks 2 and 3, bearings 1 and 4 are the journal
bearings; F is the phase angle between the eccentricity of disks 2 and 3. xi, yi i ¼ 1, 2, 3, 4 represent horizontal
and vertical displacements.

2.2. Dynamical equation

The dynamical equations of the flexible rotor system are deduced as

€Z1 ¼ o2
11ðZ2 � Z1Þ þ

F 1

m1
� jg;

€Z2 ¼ �o2
21ðZ2 � Z1Þ þ o2

22ðZ3 � Z2Þ þ e2O2ejOt � jg;
€Z3 ¼ �o2

32ðZ3 � Z2Þ þ o2
33ðZ4 � Z3Þ þ e3O2ejðOtþFÞ � jg;

€Z4 ¼ �o2
43ðZ4 � Z3Þ þ

F4

m4
� jg;

8>>>>>>>><
>>>>>>>>:

(1)
Fig. 1. Analytical model.
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where o2
lm ¼ km=ml , l ¼ 1, 2, 3, 4, m ¼ 1, 2, 3; Zj ¼ xj+iyj, j ¼ 1, 2, 3, 4. mk(k ¼ 1, 2, 3, 4) represent the masses

of the disks and necks; eq(q ¼ 2, 3) are the eccentricities of the disks; Fr ¼ Fxr+jFyr, r ¼ 1, 4, Fx1, Fy1, Fx4, Fy4

are oil-film forces of bearing 1 and 4 in x-direction and y-direction, respectively [24], which are expressed as

F xr

Fyr

" #
¼ �C

_X r

_Y r

" #
� K

X r

Y r

" #
, (2)

where

C ¼
C11 C12

C21 C22

" #
; K ¼

1

2

�C2 C3

�C3 C2

" #
; C11 ¼ C1cos

2fr þ C3sin
2fr � 2C2sinfrcosfr; C12 ¼ C21,

C21 ¼ C2ðcos
2fr � sin2frÞ þ ðC1 � C3Þsinfrcosfr; C22 ¼ C1sin

2fr þ C3cos
2fr þ 2C2sinfrcosfr,

C1 ¼
4�r_�rA 3A2 þ ð2� 5�2r Þ�

2
r
_fr �

1
2

� �2h i
ð1� �2r Þ

2 A2 � �4r
_fr �

1
2

� �2h i2 þ
2þ 4�2r
ð1� �2r Þ

5=2
Dfr; C2 ¼

8A�4r
_fr �

1
2

� �3
A2 � �4r

_fr �
1
2

� �2h i2 ,

C3 ¼
4�r_�rA A2 þ ð�2r � 2Þ�2r

_fr �
1
2

� �2h i
ð1� �2r Þ A2 � �4r

_fr �
1
2

� �2h i2 þ
2

ð1� �2r Þ
3=2

Dfr; A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�r þ

_fr �
1

2

� �2

�2r

s
,

Df ¼ pþ 2tan�1ð
�r_�r

Að1� �2r Þ
1=2
Þ; _fr ¼

xr _yr � yr _xrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

r þ y2
r

p ; _�r ¼
xr _xr þ yr _yr

�r

; �r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

r þ y2
r

p
d

.

where, fr is the angular coordinate of the center of axle neck, xr, yr are rectangular coordinate of the center of
axle neck, r ¼ 1, 4, d is the average clearance of the bearings.

O is the rotation speed of the rotor and g the gravity acceleration. Introducing the following non-
dimensional variables:

z1 ¼
Z1

d
; z1 ¼

Z2

d
; z3 ¼

Z3

d
; z4 ¼

Z4

d
; t ¼ Ot

ōij ¼
oij

O
; i; j ¼ 1; 2; 3; 4; B2 ¼

e2

d
; B3 ¼

e3

d
; ḡ ¼

g

dO2
; f i ¼

F i

dO2
; i ¼ 1; 4

9>>=
>>;. (3)

Eq. (1) can be rewritten in non-dimension form:

z001 ¼ ō2
11ðz2 � z1Þ þ

f 1

m1
� jḡ;

z002 ¼ �ō
2
21ðz2 � z1Þ þ ō2

22ðz3 � z2Þ þ B2ejOt � jḡ;

z003 ¼ �ō
2
32ðz3 � z2Þ þ ō2

33ðz4 � z3Þ þ B3ejðtþFÞ � jḡ;

z004 ¼ �ō
2
43ðz4 � z3Þ þ

f 4

m4
� jḡ;

8>>>>>>>><
>>>>>>>>:

(4)

where ‘‘0’’ represent the difference to ‘‘t’’.
3. Calculation result

Let m1 ¼ m4 ¼ 0.2 kg, m2 ¼ m3 ¼ 1.1 kg, k1 ¼ k2 ¼ 100,000N/m, k3 ¼ 400,000N/m, d ¼ 250 mm; diameter
and width of bearings are 25mm and 16mm; kinetic viscosity of lubricant m ¼ 0.05 Pa s. The maximum
Lyapunov exponent (max-Le) and bifurcation diagrams in term of rotation speed are calculated by numerical
method for different eccentricity and the phase angle of the unbalanced mass between disks 2 and 3, as shown
in Table 1 for six cases.
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Table 1

Parameters of eccentricities of masses

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

e2 (m) 0.000175 0.000225 0.0001 0.000125 0.0001 0.00025

e3 (m) 0 0 0.0001 0.000125 0.0001 0.00025

F (deg) 0 0 30 30 150 150

Table 2

The relation between the motion behavior and the max-Le for the phase angle jFjpp/2

Case 1 Rotation frequency o32Hz [32–42]Hz [42–58]Hz (58–60.5)Hz [60.5–63.5]Hz o63.5Hz

Max-Le o0 40 o0 40 o0 40

Stability of motion Stable Unstable Stable Unstable Stable Unstable

Case 2 Rotation frequency o32Hz [32–46)Hz [46–65]Hz 465Hz

Max-Le o0 40 o0 40

Stability of motion Stable Unstable Stable Unstable

Case 3 Rotation frequency o32Hz [32–43.5]Hz (43.5–58)Hz [58–61)Hz [61–64]Hz o64Hz

Max-Le o0 40 o0 40 o0 40

Stability of motion Stable Unstable Stable Unstable Stable Unstable

Case 4 Rotation frequency o30Hz [30–46.5)Hz [46.5–65]Hz 465Hz

Max-Le o0 40 o0 40

Stability of motion Stable Unstable Stable Unstable

X. Wenhui et al. / Journal of Sound and Vibration 310 (2008) 381–393384
Table 2 shows relations between the motion behavior and the max-Le of four cases with the phase angle
jFjpp/2. Figs. 2–5 are the max-Le and bifurcation diagram for cases 1, 2, 3, 4, respectively.

One finds that five kinds of system motion exist over rotation frequency of 10–100Hz. They are the stable
single period motion, the unstable primary resonance motion, the stable period doubling motion, the quasi-
period or multiperiod motion, the chaos motion with one or two chaos attractant area, respectively. For case
1, the period doubling motion occurs within the rotation frequency from 60.5 to 63.5Hz. When rotation
frequency is a little higher than 63.5Hz, the motion can reasonably be considered as the stable period doubling
motion from the bifurcation diagram. But, in fact, it is the chaotic motion with two attracting area, because
the max-Le is more than 0. For case 2, the period doubling bifurcation occurs when the rotation frequency is
58Hz. The period doubling motion occurs within the rotation frequency from 58 to 65Hz. When rotation
frequency is a little higher than 65Hz, the motion is the chaotic motion with two attracting area. For case 3,
the period doubling motion occurs within the rotation s frequency from 61 to 64Hz. When rotation frequency
is a little higher than 64Hz, the motion is the chaotic motion with two attracting area. For case 4, the period
doubling bifurcation occurs when the rotation frequency is 58Hz. The period doubling motion occurs within
the rotation frequency from 58 to 65Hz. When rotation frequency is a little higher than 65Hz, the motion is
the chaotic motion with two attracting area.

Table 3 shows relations between the motion behavior and the max-Le of two cases for the phase angle
p/2ojFjpp. Figs. 6 and 7 are the max-Le and bifurcation diagram for cases 5, 6, respectively.

One finds that the four kinds of system motion exist over rotation frequency of 10–100Hz for the phase angle
p/2ojFjpp. They are the stable single period motion, the quasi-period or multiperiod motion, the first chaos
motion, the chaos motion with two chaos attractant areas, respectively. The period doubling motion does not occur.

Fig. 8 shows the bifurcations of the system with different unbalance values. They show that the response
with same eccentricities is quite different for F ¼ 901 and 1801.

From above calculation results, we can conclude that for jFjpp/2 (see Figs. 2–5 and 8(a), 8(b)), the period
doubling bifurcation and the quasi-period or the multiperiod bifurcation will occur, and the motion will lost
its stability and gets into chaos along with increase of the rotation speed; The unstable primary resonance will
increase along with increasing the eccentricity of the rotor; And frequency range of 1/2 sub-harmonic motion
can be obtained. Moreover, comparing Figs. 2, 4, and 8(a) with Figs. 3, 5, and 8(b), respectively, one find that
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Fig. 2. The max-Le and bifurcation diagram for case 1.
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the jump phenomenon increase around the primary natural frequency (about 40Hz) along with the
eccentricity increasing. For p/2ojFjpp (see Figs. 6, 7, and 8(c), (d)), the quasi-period bifurcation or the
multiperiod bifurcation will occur, and the motion lost stability and get into chaos along with the rotation
frequency increasing. One cannot find the distinctly amplitude variety around the primary natural frequency
(about 40Hz) for the rotor. Further, the stable 1/2 sub-harmonic motion will not occur in this case. For
jFjpp/2 or p/2ojFjpp, the chaos motion with two attractant area will occur at the high rotation speed in this
rotor system. From conclusions above, the system response is different when the phase angle of the
eccentricity of disks is jFjpp/2 or p/2ojFjpp. So utilizing this characteristic one can estimated the
eccentricity of rotor system.

4. Experimental results

The experimental studies are carried out on the test rotor rig as shown in Fig. 9. The lengths
L1 ¼ L2 ¼ L3 ¼ 15.5 cm, diameter of the shaft is 12mm, masses of two disks are 0.99 kg, respectively. Added
mass is used to change the imbalance level of disks.
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Fig. 3. The max-Le and bifurcation diagram for case 2.
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4.1. Experiment 1: without added mass

The test rig consists of shaft, disks, bearing, motor, and restricted plane board. Owing to the axisymmetric
mass arrangement, Fig. 10 presents spectrum cascade and selected orbits of journal 1 only. The spectrum
cascade indicates that the rotating speed grows quite fast in passing through the critical speed at 28.3Hz to
avoid severe rubs between the shaft and the restricted plane board and the occurrence of rub-induced
backward whirl. Such a backward whirl can lead the rotor to fail when passing the critical speed [25]. The
rotating speed can be controlled to increase slowly and steadily after passing the critical speed, especially when
operating in oil whirl regime. The transition from synchronous whirl to non-synchronous whirl, known also as
‘‘oil whirl’’ or ‘‘instability,’’ is encountered at the threshold speed 50.9Hz (t ¼ 58.2 s). Besides the pre-existing
component of the rotating speed Frot, the whirling frequency Fwhirl component appears also in the spectrum
after the threshold speed is exceeded. The whirling frequency Fwhirl at the onset of instability Fwhirl is found to
be 25.4Hz, which is nearly 3Hz lower than the critical speed and equals to half of Frot. So the instability
results in a period-doubling bifurcation. As the rotating speed increases further, Fwhirl increases
simultaneously and keeps the 1:2 ratio with Frot. The whirl orbit of journal 1 at Frot ¼ 52Hz shows clearly
a period 2 motion, that is a large circle and a small circle appear alternately as time goes on.
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Fig. 4. The max-Le and bifurcation diagram for case 3.
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With increasing Frot and Fwhirl, their magnitudes gradually decrease and grow, respectively. As Fwhirl is
approaching the critical frequency 28.3Hz, a resonance known as ‘‘oil whip’’ in engineering happens at
Frot ¼ 54.35Hz. During the oil whip regime, the whirl orbit grows very rapidly. The spectrum is already
dominated by the Fwhirl component and the smaller circles have disappeared from the whirl orbit as manifested
in the whirl orbit at Frot ¼ 55.2Hz. The rotating speed of the rotor can hardly be increased further hereafter
because most energy provided by the power-limited motor is transferred from the rotation to maintain the
non-synchronous (half-frequency) whirl. Staying in the oil whip regime for a long time is damaging to the test
rig as severe vibration may cause partial rubs between the shaft and the restricted plane board. So the rotating
speed should be decreased in time. Careful check shows that during the speed-down, the rotor transits from
the non-synchronous whirl to synchronous whirl at 47.8Hz, which is 3.1Hz lower than the threshold speed
50.9Hz during speed-up. The difference between the two transition speeds proves a commonly known delay
phenomenon [26].

From the numerical simulation results when the phase angle jFjpp/2, the primary natural frequency of
rotor-bearing system is about 40Hz. The period double motion occurs when the rotation frequency Frot is
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Fig. 5. The max-Le and bifurcation diagram for case 4.

Table 3

The relation between the motion behavior and the max-Le for the phase angle p/2ojFjpp

Case 5 Rotation speed o60.5Hz p60.5Hz

Max-Le o0 40

Stability of motion Stable Unstable

Case 6 Rotation speed o62.5Hz p62.5Hz

Max-Le o0 40

Stability of motion Stable Unstable

X. Wenhui et al. / Journal of Sound and Vibration 310 (2008) 381–393388
about 58Hz. With increasing Frot, the chaos motion with two chaos attractant areas occurs when the rotation
frequency Frot is about 65Hz. When the period doubling motion or the chaos motion with two chaos
attractant areas occurs, Frot and Fwhirl frequency components must be predominant in response. As Fwhirl is
approaching the critical frequency 40Hz, the magnitude of x1 grows very rapidly at about Frot ¼ 80Hz. Fwhirl

frequency components must be predominant in response. So a resonance known as ‘‘oil whip’’ in engineering
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Fig. 6. The max-Le and bifurcation diagram for case 5.
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happens. All these show that the numerical simulation results for jFjpp/2 and experimental results for the
perfectly balanced disk are qualitatively equivalent.

4.2. Experiment 2: using added mass

The spectrum cascades of horizontal motions of the imbalanced rotor, by attaching a little added mass to
the disk 2, are presented in Fig. 11. In order to avoid violent vibration the rotating speed grows quite fast in
passing through the critical speed at 29.3Hz. But the vibration amplitude did not distinctly increase in passing
through the critical speed at Fwhirl 29.3Hz. This shows the influence of the different imbalance. Moreover,
when operating in oil whirl regime, the whirl orbit of journal 1 do not shows clearly a period 2 motion, that is
only a large circle as time goes on. These show that Fwhirl frequency components are predominant. Other
dynamics phenomena are basically same with that no added mass.

From the numerical simulation results when the phase angle p/2ojFjpp, the vibration magnitude of x1 do
not remarkably increase at the primary natural frequency about 40Hz. While the vibration amplitude did not
also distinctly increase at the primary natural frequency in the experimental results. The period doubling
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Fig. 7. The max-Le and bifurcation diagram for case 6.
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motion do not occurs, but with increasing Frot, the chaos motion with two chaos attractant area occurs when
the rotation frequency Frot is about between 67 and 92Hz, and the magnitude of x1 increases or decreases very
rapidly within [67 and 92Hz]. So the oil whip in engineering happens. Fwhirl frequency components must be
predominant in this time. From the experimental results, the whirl orbit of journal 1 at Frot ¼ 52.4 and 55.3Hz
shows that is only a large circle as time goes on, so Fwhirl frequency components is also predominant in this
time. All these show that the numerical simulation results for p/2ojFjpp and experimental results for the
disk using added mass are similar.

5. Conclusion

Investigation of a rotor-bearing system with two disks shows that the max Lyapunov exponent is valid
method in identifying the bifurcation and chaos character of the flexible rotor system supported on lubricated
bearing. The chaos with two attractant area is found which cannot be distinguished from the stable period
double motion using Poincarè section; Second, five types motion patterns including the stable single period
motion, the unstable primary resonance motion, the stable quasi-period or multiperiod motion, the stable
doubling period motion and the chaos motion with one or two attractant area are obtained. Third, for the
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Fig. 8. Bifurcations with different unbalance values: (a) e2 ¼ 0.0001, e3 ¼ 0.0001, F ¼ 901, (b) e2 ¼ 0.0002, e3 ¼ 0.0002, F ¼ 901,

(c) e2 ¼ 0.0001, e3 ¼ 0.0001, F ¼ 1801 and (d) e2 ¼ 0.0002, e3 ¼ 0.0002, F ¼ 1801.

Fig. 9. The experiment model of the rotor system.

X. Wenhui et al. / Journal of Sound and Vibration 310 (2008) 381–393 391
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Fig. 10. Experimental result: spectrum cascade and selected orbits (x1, y1).

Fig. 11. Experimental result: spectrum cascade and selected orbits (x1, y1).

X. Wenhui et al. / Journal of Sound and Vibration 310 (2008) 381–393392
flexible rotor system with two unbalanced disks, the system response is very different when the phase angle of
the eccentricity of disks is within [0, p/2] and within [p/2, p]. So utilizing this characteristic one can estimate the
eccentricity of rotating machinery in the practice.
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